Show simple item record

dc.contributor.authorBeton, Peter
dc.contributor.otherKerfoot, James
dc.contributor.otherNizovtsev, Anton S.
dc.contributor.otherSummerfield, Alex
dc.contributor.otherKorolkov, Vladimir V.
dc.contributor.otherTaniguchi, Takashi
dc.contributor.otherWatanabe, Kenji
dc.contributor.otherAntolín, Elisa
dc.contributor.otherBesley, Elena
dc.date.accessioned2020-01-07T14:41:30Z
dc.date.available2020-01-07T14:41:30Z
dc.date.issued2019-12-10
dc.identifier.urihttps://rdmc.nottingham.ac.uk/handle/internal/7028
dc.description.abstractWe show that ordered monolayers of organic molecules stabilized by hydrogen bonding on the surface of exfoliated few-layer hexagonal boron nitride (hBN) flakes may be incorporated into van der Waals heterostructures with integral few-layer graphene contacts forming a molecular/2D hybrid tunneling diode. Electrons can tunnel from through the hBN/molecular barrier under an applied voltage VSD and we observe molecular electroluminescence from an excited singlet state with an emitted photon energy > eVSD, indicating up-conversion by energies up to ~ 1 eV. We show that tunnelling electrons excite embedded molecules into singlet states in a two-step process via an intermediate triplet state through inelastic scattering and also observe direct emission from the triplet state. These heterostructures provide a solid-state device in which spin-triplet states, which cannot be generated by optical transitions, can be controllably excited and provide a new route to investigate the physics, chemistry and quantum spin-based applications of triplet generation, emission and molecular photon up-conversion.en_UK
dc.language.isoenen_UK
dc.publisherThe University of Nottinghamen_UK
dc.rightsCC-BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.sourcearXiv:1909.08488en_UK
dc.subject.lcshMonomolecular filmsen_UK
dc.subject.lcshHeterostructuresen_UK
dc.subject.lcshTunnel diodesen_UK
dc.titleTriplet excitation and electroluminescence from a supramolecular monolayer embedded in a boron nitride tunnel barrieren_UK
dc.identifier.doihttp://doi.org/10.17639/nott.7020
dc.subject.freeElectroluminescence, Van der Waas Heterostructure, Up-conversion, Molecular Self-Assemblyen_UK
dc.subject.jacsPhysical sciencesen_UK
dc.subject.lcQ Science::QD Chemistry::QD450 Physical and theoretical chemistryen_UK
dc.subject.lcT Technology::TK Electrical engineering. Electronics Nuclear engineering::TK7800 Electronicsen_UK
dc.subject.lcQ Science::QC Physics::QC501 Electricity and magnetismen_UK
dc.date.collection01.02.2019 - 01.07.2019en_UK
uon.divisionUniversity of Nottingham, UK Campus::Faculty of Science::School of Physics and Astronomyen_UK
uon.funder.controlledEngineering & Physical Sciences Research Councilen_UK
uon.datatypeRaw data files: AFM images (.ibw), photoluminescence and electroluminescence spectra (.ls6 and .txt), current vs. voltage measurement files (.txt), optical microscopy images (.jpg)en_UK
uon.funder.freeLeverhulme Trusten_UK
uon.funder.freeMEXTen_UK
uon.grantEP/N033906/1en_UK
uon.grantRPG-2016-104en_UK
uon.grantJPMJCR15F3en_UK
uon.grantEP/P020232/1en_UK
uon.collectionmethodOptical microscopy, Fluorescence microscopy, Atomic force microscopy, probe station current-voltage measurementsen_UK
uon.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Public Research Data
    A collection of research data, held in this repository, that is publicly available, except where individual embargoes apply

Show simple item record

CC-BY
Except where otherwise noted, this item's license is described as Creative Commons by Attribution