Show simple item record

dc.contributor.authorBeton, Peter
dc.contributor.otherCassabois, Guillaume
dc.contributor.otherGil, Bernard
dc.contributor.otherSummerfield, Alex
dc.contributor.otherNovikov, Sergei
dc.contributor.otherMellor, Chris
dc.contributor.otherEaves, Laurence
dc.contributor.otherFoxon, C. Thomas
dc.contributor.otherCheng, Tin S.
dc.contributor.otherElias, C.
dc.contributor.otherValvin, P.
dc.contributor.otherPelini, T.
dc.date.accessioned2019-06-28T10:35:34Z
dc.date.available2019-06-28T10:35:34Z
dc.date.issued2019-06-28
dc.identifier.urihttps://rdmc.nottingham.ac.uk/handle/internal/7003
dc.description.abstractHexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not con rmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus conforming a crossover to direct gap in the monolayer limit. The giant exciton binding energy in monolayer boron nitride requires selective optical pumping through resonant excitation of phonons. These results on large area monolayer boron nitride demonstrate its potential within the family of van der Waals crystals for photonic and light-matter applications in the deep ultraviolet.en_UK
dc.language.isoenen_UK
dc.publisherThe University of Nottinghamen_UK
dc.rightsCC-BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.lcshBoron nitrideen_UK
dc.subject.lcshAtomic force microscopyen_UK
dc.subject.lcshMolecular beam epitaxyen_UK
dc.titleDirect band-gap crossover in epitaxial monolayer boron nitrideen_UK
dc.identifier.doihttp://doi.org/10.17639/nott.6996
dc.subject.freeboron nitride, direct gap semiconductor, ultra-violet, monolayeren_UK
dc.subject.jacsPhysical sciences::Physicsen_UK
dc.subject.lcQ Science::QC Physics::QC350 Optics. Light, including spectroscopyen_UK
uon.divisionUniversity of Nottingham, UK Campus::Faculty of Science::School of Physics and Astronomyen_UK
uon.funder.controlledEngineering & Physical Sciences Research Councilen_UK
uon.datatypeScanning Probe Microscopy Images, Raman spectra, photoluminescence and reflectance spectraen_UK
uon.funder.freeLeverhulme Trusten_UK
uon.funder.freeGovernment of the Russian Federationen_UK
uon.funder.freeGaNeX (ANR- 11-LABX-0014)en_UK
uon.collectionmethodAsylum Cypher Atomic Force Microscope, custom built ultra-violet photoluminescence equipmenten_UK
dc.relation.doi10.1038/s41467-019-10610-5en_UK


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC-BY
Except where otherwise noted, this item's license is described as Creative Commons by Attribution