Show simple item record

dc.contributor.authorAlexander, Morgan
dc.contributor.otherKotowska, Anna M.
dc.contributor.otherFay, Michael
dc.contributor.otherWatts, Julie
dc.contributor.otherScurr, David
dc.contributor.otherLanger, Robert
dc.contributor.otherGilmore, Ian
dc.contributor.otherHowe, Alaina
dc.contributor.otherCapka, Vladimir
dc.contributor.otherPerez, Corey
dc.contributor.otherDoud, Devin
dc.contributor.otherPatel, Siddharth
dc.contributor.otherUmbarger, Mark
dc.date.accessioned2025-01-14T09:04:22Z
dc.date.available2025-01-14T09:04:22Z
dc.date.issued2025-01-14
dc.identifier.urihttps://rdmc.nottingham.ac.uk/handle/internal/11680
dc.description.abstractLipid nanoparticle-RNA formulations are used for the delivery of vaccines and other therapies. RNA molecules are encapsulated within their interior through electrostatic interactions with positively charged lipids. The identity of the lipids that present at their surface play a role in how they interact with and are perceived by the body and their resultant potency. To investigate the surface chemistry of two formulations we develop cryogenic sample preparation for transmission electron microscopy (TEM) prior to depth profiling Orbitrap secondary ion mass spectrometry (Cryo-OrbiSIMS). It is found that the depth distribution of individual lipid components is revealed relative to the surface and the RNA cargo defining the core. A preferential lipid orientation can be determined for the 1,2-Dimyristoyl-glycero-3-methox-polyethylene glycol 2000 (DMG-PEG2k) molecule, by comparing the profiles of different fragments from the same molecule, from PEG or DMG. PEG fragments are found at the LNP surface, while the DMG fragments are deeper, coincident with the RNA fragment from the core, in agreement with established models of LNPs. This laboratory-based de novo analysis technique requires no labelling, providing advantages over large facility neutron scattering characterisation.en_UK
dc.language.isoenen_UK
dc.publisherSpringer Natureen_UK
dc.rightsCC-BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.lcshNanoparticlesen_UK
dc.subject.lcshLipidsen_UK
dc.subject.lcshMass spectrometryen_UK
dc.subject.meshNanostructuresen_UK
dc.subject.meshLipidsen_UK
dc.subject.meshMass Spectrometryen_UK
dc.titleMolecular orientation and stratification revealed in RNA-lipid nanoparticles using Cryogenic Orbitrap Secondary Ion Mass Spectrometry (Cryo-OrbiSIMS)en_UK
dc.typeDataseten_UK
dc.identifier.doihttp://doi.org/10.17639/nott.7512
dc.subject.freeOrbiSIMS, SIMS, lipid nanoparticles, LNPsen_UK
dc.subject.jacsSubjects Allied to Medicine::Pharmacology, toxicology & pharmacy::Pharmacologyen_UK
dc.subject.lcR Medicine::RS Pharmacy and materia medicaen_UK
uon.divisionUniversity of Nottingham, UK Campusen_UK
uon.funder.controlledNoneen_UK
uon.datatypeOrbiSIMS depth profile and spectraen_UK
uon.collectionmethodOrbiSIMSen_UK
uon.institutes-centresUniversity of Nottingham, UK Campusen_UK


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

  • Public Research Data
    A collection of research data, held in this repository, that is publicly available, except where individual embargoes apply

Show simple item record

CC-BY
Except where otherwise noted, this item's license is described as Creative Commons by Attribution