Show simple item record

dc.contributor.authorBradford, Jonathan
dc.contributor.otherCheng, Tin
dc.contributor.otherJames, Tyler
dc.contributor.otherKhlobystov, Andrei
dc.contributor.otherMellor, Chris
dc.contributor.otherNovikov, Sergei
dc.contributor.otherBeton, Peter
dc.date.accessioned2023-02-07T08:46:45Z
dc.date.available2023-02-07T08:46:45Z
dc.date.issued2023-02-07
dc.identifier.urihttps://rdmc.nottingham.ac.uk/handle/internal/10443
dc.description.abstractIntegration of graphene and hexagonal boron nitride (hBN) in lateral heterostructures has provided a route to broadly engineer the material properties by quantum confinement of electrons or introduction of novel electronic and magnetic states at the interface. In this work we demonstrate lateral heteroepitaxial growth of graphene nanoribbons (GNRs) passivated by hBN using high-temperature molecular beam epitaxy (HT-MBE) to grow graphene in oriented hBN trenches formed ex-situ by catalytic nanoparticle etching. High resolution atomic force microscopy (AFM) reveals that graphene nanoribbons grow epitaxially from the etched hBN edges, and merge to form a graphene nanoribbon network passivated by hBN. Using conductive AFM we probe the nanoscale electrical properties of the nanoribbons and observe quasiparticle interference patterns caused by intervalley scattering at the graphene/hBN interface, which carries implications for the potential transport characteristics of hBN passivated GNR devices.en_UK
dc.language.isoenen_UK
dc.publisherThe University of Nottinghamen_UK
dc.rightsCC-BY*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subject.lcshNanostructured materialsen_UK
dc.subject.lcshNanotechnologyen_UK
dc.subject.lcshMolecular beam epitaxyen_UK
dc.subject.lcshGrapheneen_UK
dc.titleGraphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxyen_UK
dc.identifier.doihttp://doi.org/10.17639/nott.7273
dc.subject.freegraphene nanoribbons, hexagonal boron nitride, lateral heterostructure, conductive AFM, molecular beam epitaxy, nanoparticle etchingen_UK
dc.subject.jacsTechnologies::Materials technology not otherwise specified::Materials technologyen_UK
dc.subject.lcT Technology::T Technology (General)en_UK
uon.divisionUniversity of Nottingham, UK Campusen_UK
uon.funder.controlledEngineering & Physical Sciences Research Councilen_UK
uon.datatypeAtomic force microscopy imagesen_UK
uon.grantEP/K040243/1en_UK
uon.grantEP/P019080/1en_UK
uon.grantEP/V05323X/1en_UK
uon.collectionmethodAtomic force microscopyen_UK
uon.institutes-centresUniversity of Nottingham, UK Campusen_UK
uon.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • Public Research Data
    A collection of research data, held in this repository, that is publicly available, except where individual embargoes apply

Show simple item record

CC-BY
Except where otherwise noted, this item's license is described as Creative Commons by Attribution