Lecture 1: Introduction to QFT and Second Quantization

- General remarks about quantum field theory.
- What is quantum field theory about?
- Why relativity plus QM imply an unfixed number of particles?
- Creation-annihilation operators.
- Second quantization.

General remarks

- Quantum Field Theory as the theory of "everything": all other physics is derivable, except gravity.
- The pinnacle of human thought. The distillation of basic notions from the very beginning of the physics.
- May seem hard but simple and beautiful once understood.

What is QFT about?

What is QFT about?

- QFT is a formalism for a quantum description of a multi-particle system.

What is QFT about?

- QFT is a formalism for a quantum description of a multi-particle system.
- The number of particles is unfixed.

What is QFT about?

- QFT is a formalism for a quantum description of a multi-particle system.
- The number of particles is unfixed.
- QFT can describe relativistic as well as non-relativistic systems.

What is QFT about?

- QFT is a formalism for a quantum description of a multi-particle system.
- The number of particles is unfixed.
- QFT can describe relativistic as well as non-relativistic systems.
- QFT's technical and conceptual difficulties stem from it having to describe processes involving an unfixed number of particles.

Why relativity plus QM implies an unfixed number of particles

- Relativity says that Mass=Energy.

Why relativity plus QM implies an unfixed number of particles

- Relativity says that Mass=Energy.
- Quantum mechanics makes any energy available for a short time: $\Delta E \cdot \Delta t \sim \hbar$

Creation-Annihilation operators

Problem: Suppose $\left[a, a^{\dagger}\right]=1$. Find the spectrum of the hermitian operator $a^{\dagger} a$.

Creation-Annihilation operators

Problem: Suppose $\left[a, a^{\dagger}\right]=1$. Find the spectrum of the hermitian operator $a^{\dagger} a$.

Solution: Eigenvalues are positive integers n. The action of a, a^{\dagger} on normalized eigenstates is given by

$$
\begin{gathered}
a|n\rangle=\sqrt{n}|n-1\rangle, \\
a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle .
\end{gathered}
$$

In particular, there is the "vacuum" state $|0\rangle: a|0\rangle=0$.

Interpretation: The number n as the number of "quanta" in the state.

Second Quantization

- Consider an arbitrary quantum or classical system, whose states are denoted by $|i\rangle$. E.g. can be eigenstates of the Hamiltonian:

$$
\hat{H}|i\rangle=E_{i}|i\rangle
$$

Second Quantization

- Consider an arbitrary quantum or classical system, whose states are denoted by $|i\rangle$. E.g. can be eigenstates of the Hamiltonian:

$$
\hat{H}|i\rangle=E_{i}|i\rangle
$$

- Want to alow any number of "quanta" or "particles" in each state $|i\rangle$. A general state is specified by its occupation numbers n_{1}, n_{2}, \ldots :

$$
\left|n_{1}, n_{2}, \ldots\right\rangle
$$

Introduce creation-annihilation operators, one copy for each i :

$$
\begin{gathered}
{\left[a_{i}, a_{i}^{\dagger}\right]=1,} \\
a_{i}\left|n_{1}, n_{2}, \ldots, n_{i}, \ldots\right\rangle=\sqrt{n_{i}}\left|n_{1}, n_{2}, \ldots, n_{i}-1, \ldots\right\rangle, \\
a_{i}^{\dagger}\left|n_{1}, n_{2}, \ldots, n_{i}, \ldots\right\rangle=\sqrt{n_{i}+1}\left|n_{1}, n_{2}, \ldots, n_{i}+1, \ldots\right\rangle .
\end{gathered}
$$

The operators a_{i}, a_{i}^{\dagger} create-annihilate particles in state i.
The general state can be built from the vacuum:

$$
\left|n_{1}, n_{2}, \ldots, n_{i}, \ldots\right\rangle=\left[\prod_{i} \frac{\left(a_{i}^{\dagger}\right)^{n_{i}}}{\left(n_{i}!\right)^{1 / 2}}\right]|0\rangle .
$$

Here $|0\rangle: a_{i}|0\rangle=0, \forall i$.

Multi-particle states: more convenient notation

$$
\left|i_{1}, \ldots, i_{k}\right\rangle=a_{i_{1}}^{\dagger} \ldots a_{i_{k}}^{\dagger}|0\rangle
$$

If all i_{1}, \ldots, i_{k} are all different - correctly normalized. Otherwise norm greater than one.

Relation between the "occupation number" and the "multi-particle" notations:

$$
|\underbrace{1, \ldots, 1}_{n_{1}} \underbrace{2, \ldots, 2}_{n_{2}}, \ldots\rangle=\left(a_{1}^{\dagger}\right)^{n_{1}}\left(a_{2}^{\dagger}\right)^{n_{2}} \ldots|0\rangle=\sqrt{n_{1}!n_{2}!\ldots}\left|n_{1}, n_{2}, \ldots\right\rangle
$$

The action of creation-annihilation operators on multi-particle states:

$$
\begin{gathered}
a_{i}^{\dagger}\left|i_{1}, \ldots, i_{k}\right\rangle=\left|i, i_{1}, \ldots, i_{k}\right\rangle, \\
\left.\left.a_{i}\left|i_{1}, \ldots, i_{k}\right\rangle=\sum_{l=1}^{k} \delta_{i i_{l}} \mid i_{1}, \ldots,\left(\text { no } i_{l}\right), \ldots, i_{k}\right\rangle=\sum_{l=1}^{k}\left\langle i \mid i_{l}\right\rangle \mid i_{1}, \ldots,\left(\text { no } i_{l}\right), \ldots, i_{k}\right\rangle .
\end{gathered}
$$

Fock space: Can form a Hilbert space by considering arbitrary linear combinations of multi-particle states. States with different number of particles are orthogonal.

Multi-particle operators: one particle

Problem: Have an operator $A^{(1)}$ that "knows" how to act on 1-particle states. How to extend it on multi-particle states?

Since $\left|i_{1}, \ldots, i_{k}\right\rangle=\left|i_{1}\right\rangle \otimes \ldots \otimes\left|i_{k}\right\rangle$, then natural to define:

$$
\hat{A}\left|i_{1}, \ldots, i_{k}\right\rangle=A^{(1)}\left|i_{1}\right\rangle \otimes \ldots \otimes\left|i_{k}\right\rangle+\ldots\left|i_{1}\right\rangle \otimes \ldots \otimes A^{(1)}\left|i_{k}\right\rangle .
$$

If each state - eigenstate of $A^{(1)}$, then

$$
\hat{A}\left|i_{1}, \ldots, i_{k}\right\rangle=\left(a_{1}+\ldots+a_{k}\right)\left|i_{1}, \ldots, i_{k}\right\rangle .
$$

What about a general operator?

Multi-particle operators: one particle

Problem: Have an operator $A^{(1)}$ that "knows" how to act on 1-particle states. How to extend it on multi-particle states?

Since $\left|i_{1}, \ldots, i_{k}\right\rangle=\left|i_{1}\right\rangle \otimes \ldots \otimes\left|i_{k}\right\rangle$, then natural to define:

$$
\hat{A}\left|i_{1}, \ldots, i_{k}\right\rangle=A^{(1)}\left|i_{1}\right\rangle \otimes \ldots \otimes\left|i_{k}\right\rangle+\ldots\left|i_{1}\right\rangle \otimes \ldots \otimes A^{(1)}\left|i_{k}\right\rangle .
$$

If each state - eigenstate of $A^{(1)}$, then

$$
\hat{A}\left|i_{1}, \ldots, i_{k}\right\rangle=\left(a_{1}+\ldots+a_{k}\right)\left|i_{1}, \ldots, i_{k}\right\rangle .
$$

What about a general operator?

$$
\hat{A}=\sum_{i j} A_{i j} a_{i}^{\dagger} a_{j} .
$$

2-Particle operators

$$
V^{(2)}=\sum_{i j, k l} V_{i j, k l}|i j\rangle\langle k l| .
$$

Want to have an extension to multi-particle states such that the operator acts on all possible pairs of states:

$$
\left.\hat{V}\left|i_{1}, \ldots, i_{k}\right\rangle=\sum_{l<m}\left(V^{(2)}\left|i_{i}\right\rangle\left|i_{m}\right\rangle\right) \otimes \mid i_{1}, \ldots,\left(\text { no } i_{l}\right), \ldots,\left(\text { no } i_{m}\right), \ldots, i_{k}\right\rangle
$$

Can check that

$$
\hat{V}=\sum_{i j, k l} V_{i j, k l} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l} .
$$

The field concept

The field is the most important tool for doing multi-particle physics!!!

$$
\hat{\phi}(\xi)=\sum_{i} a_{i} \Psi_{i}(\xi)
$$

In words: the linear combination of annihilation operators; the coefficients are wave-functions $\Psi_{i}(\xi)$.

$$
\left[\hat{\phi}(\xi), \hat{\phi}\left(\xi^{\prime}\right)\right]=\delta\left(\xi, \xi^{\prime}\right)
$$

The operators in term of the field

$$
\begin{gathered}
\hat{A}=\int d \xi \hat{\phi}^{\dagger}(\xi) A^{(1)} \hat{\phi}(\xi) . \\
\hat{V}=\int d \xi d \xi^{\prime} \hat{\phi}^{\dagger}(\xi) \hat{\phi}^{\dagger}\left(\xi^{\prime}\right) V^{(2)} \hat{\phi}(\xi) \hat{\phi}\left(\xi^{\prime}\right) .
\end{gathered}
$$

Summary of second quantization

- Multi-particle states $\left|i_{1}, \ldots, i_{k}\right\rangle$, creation-annihilation operators a_{i}, a_{i}^{\dagger}, and the field $\hat{\phi}$.

Summary of second quantization

- Multi-particle states $\left|i_{1}, \ldots, i_{k}\right\rangle$, creation-annihilation operators a_{i}, a_{i}^{\dagger}, and the field $\hat{\phi}$.
- The formalism of multi-particle states and operators can be greatly developed. Very useful in statistical and solid state physics.

Summary of second quantization

- Multi-particle states $\left|i_{1}, \ldots, i_{k}\right\rangle$, creation-annihilation operators a_{i}, a_{i}^{\dagger}, and the field $\hat{\phi}$.
- The formalism of multi-particle states and operators can be greatly developed. Very useful in statistical and solid state physics.
- Quantum field theory arises by applying the procedure of second quantization to the classical system: the relativistic field.

