
Lecture 1: Introduction to QFT and Second Quantization

• General remarks about quantum field theory.

• What is quantum field theory about?

• Why relativity plus QM imply an unfixed number of particles?

• Creation-annihilation operators.

• Second quantization.
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General remarks

• Quantum Field Theory as the theory of “everything”: all other physics is
derivable, except gravity.

• The pinnacle of human thought. The distillation of basic notions from the very
beginning of the physics.

• May seem hard but simple and beautiful once understood.



3

What is QFT about?



3

What is QFT about?

• QFT is a formalism for a quantum description of a multi-particle system.



3

What is QFT about?

• QFT is a formalism for a quantum description of a multi-particle system.

• The number of particles is unfixed.



3

What is QFT about?

• QFT is a formalism for a quantum description of a multi-particle system.

• The number of particles is unfixed.

• QFT can describe relativistic as well as non-relativistic systems.



3

What is QFT about?

• QFT is a formalism for a quantum description of a multi-particle system.

• The number of particles is unfixed.

• QFT can describe relativistic as well as non-relativistic systems.

• QFT’s technical and conceptual difficulties stem from it having to describe
processes involving an unfixed number of particles.
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Why relativity plus QM implies an unfixed number of particles

• Relativity says that Mass=Energy.
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Why relativity plus QM implies an unfixed number of particles

• Relativity says that Mass=Energy.

• Quantum mechanics makes any energy available for a short time: ∆E ·∆t ∼ ~
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Creation-Annihilation operators

Problem: Suppose [a, a†] = 1. Find the spectrum of the hermitian operator a†a.
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Creation-Annihilation operators

Problem: Suppose [a, a†] = 1. Find the spectrum of the hermitian operator a†a.

Solution: Eigenvalues are positive integers n. The action of a, a† on normalized
eigenstates is given by

a|n〉 =
√

n|n − 1〉,
a†|n〉 =

√
n + 1|n + 1〉.

In particular, there is the “vacuum” state |0〉 : a|0〉 = 0.

Interpretation: The number n as the number of “quanta” in the state.
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Second Quantization

• Consider an arbitrary quantum or classical system, whose states are denoted by
|i〉. E.g. can be eigenstates of the Hamiltonian:

Ĥ|i〉 = Ei|i〉
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Second Quantization

• Consider an arbitrary quantum or classical system, whose states are denoted by
|i〉. E.g. can be eigenstates of the Hamiltonian:

Ĥ|i〉 = Ei|i〉

• Want to alow any number of “quanta” or “particles” in each state |i〉. A general
state is specified by its occupation numbers n1, n2, . . .:

|n1, n2, . . .〉
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Introduce creation-annihilation operators, one copy for each i:

[ai, a
†
i ] = 1,

ai|n1, n2, . . . , ni, . . .〉 =
√

ni|n1, n2, . . . , ni − 1, . . .〉,
a†

i |n1, n2, . . . , ni, . . .〉 =
√

ni + 1|n1, n2, . . . , ni + 1, . . .〉.

The operators ai, a
†
i create-annihilate particles in state i.

The general state can be built from the vacuum:

|n1, n2, . . . , ni, . . .〉 =

[∏
i

(a†
i)

ni

(ni!)1/2

]
|0〉.

Here |0〉 : ai|0〉 = 0, ∀i.
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Multi-particle states: more convenient notation

|i1, . . . , ik〉 = a†
i1

. . . a†
ik
|0〉

If all i1, . . . , ik are all different - correctly normalized. Otherwise norm greater
than one.

Relation between the “occupation number” and the “multi-particle” notations:

| 1, . . . , 1︸ ︷︷ ︸
n1

2, . . . , 2︸ ︷︷ ︸
n2

, . . .〉 = (a†
1)

n1(a†
2)

n2 . . . |0〉 =
√

n1!n2! . . .|n1, n2, . . .〉
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The action of creation-annihilation operators on multi-particle states:

a†
i |i1, . . . , ik〉 = |i, i1, . . . , ik〉,

ai|i1, . . . , ik〉 =
k∑

l=1

δiil|i1, . . . , (no il), . . . , ik〉 =
k∑

l=1

〈i|il〉|i1, . . . , (no il), . . . , ik〉.

Fock space: Can form a Hilbert space by considering arbitrary linear combinations
of multi-particle states. States with different number of particles are orthogonal.
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Multi-particle operators: one particle

Problem: Have an operator A(1) that “knows” how to act on 1-particle states.
How to extend it on multi-particle states?

Since |i1, . . . , ik〉 = |i1〉 ⊗ . . .⊗ |ik〉, then natural to define:

Â|i1, . . . , ik〉 = A(1)|i1〉 ⊗ . . .⊗ |ik〉+ . . . |i1〉 ⊗ . . .⊗A(1)|ik〉.

If each state - eigenstate of A(1), then

Â|i1, . . . , ik〉 = (a1 + . . . + ak)|i1, . . . , ik〉.

What about a general operator?
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Multi-particle operators: one particle

Problem: Have an operator A(1) that “knows” how to act on 1-particle states.
How to extend it on multi-particle states?

Since |i1, . . . , ik〉 = |i1〉 ⊗ . . .⊗ |ik〉, then natural to define:

Â|i1, . . . , ik〉 = A(1)|i1〉 ⊗ . . .⊗ |ik〉+ . . . |i1〉 ⊗ . . .⊗A(1)|ik〉.

If each state - eigenstate of A(1), then

Â|i1, . . . , ik〉 = (a1 + . . . + ak)|i1, . . . , ik〉.

What about a general operator?

Â =
∑
ij

Aija
†
iaj.



11

2-Particle operators

V (2) =
∑
ij,kl

Vij,kl|ij〉〈kl|.

Want to have an extension to multi-particle states such that the operator acts on
all possible pairs of states:

V̂ |i1, . . . , ik〉 =
∑
l<m

(
V (2)|il〉|im〉

)
⊗ |i1, . . . , (no il), . . . , (no im), . . . , ik〉

Can check that

V̂ =
∑
ij,kl

Vij,kla
†
ia

†
jakal.
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The field concept

The field is the most important tool for doing multi-particle physics!!!

φ̂(ξ) =
∑

i

aiΨi(ξ)

In words: the linear combination of annihilation operators; the coefficients are
wave-functions Ψi(ξ).

[φ̂(ξ), φ̂(ξ′)] = δ(ξ, ξ′).
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The operators in term of the field

Â =
∫

dξφ̂†(ξ)A(1)φ̂(ξ).

V̂ =
∫

dξdξ′φ̂†(ξ)φ̂†(ξ′)V (2)φ̂(ξ)φ̂(ξ′).
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Summary of second quantization

• Multi-particle states |i1, . . . , ik〉, creation-annihilation operators ai, a
†
i , and the

field φ̂.
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Very useful in statistical and solid state physics.
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Summary of second quantization

• Multi-particle states |i1, . . . , ik〉, creation-annihilation operators ai, a
†
i , and the

field φ̂.

• The formalism of multi-particle states and operators can be greatly developed.
Very useful in statistical and solid state physics.

• Quantum field theory arises by applying the procedure of second quantization to
the classical system: the relativistic field.


